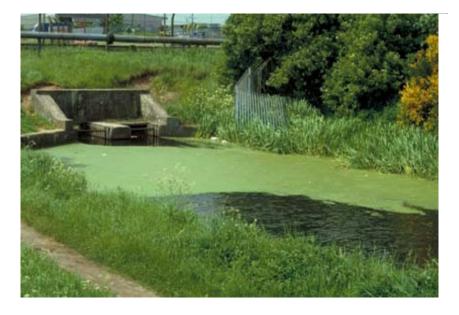
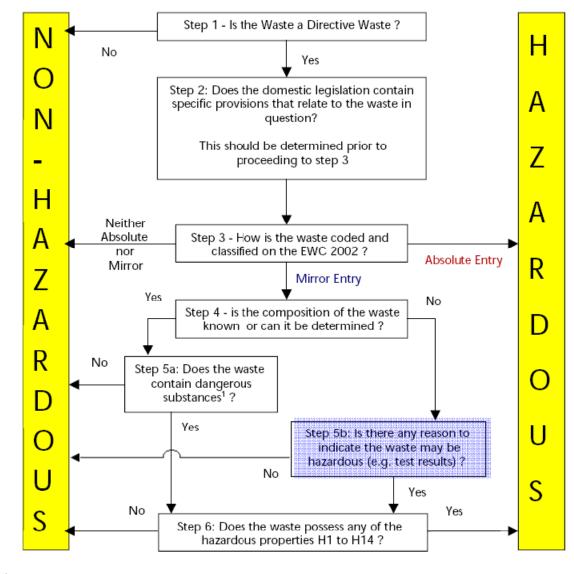


### CLASSIFICATION OF BRITISH WATERWAYS DREDGED MATERIAL







### BRITISH WATERWAYS 1992 NATIONAL SEDIMENT SURVEY

Survey based on sampling our network at 2 km intervals

Only two lengths of canal were identified as having contamination loadings signifying them as "special waste"

- mercury contaminated sediments in Scotland (associated with a former explosives factory)
- a short length of a canal in the North West England (associated with a discharge from chemical factory)









## CHALLENGE OF USING UK REGULATORY GUIDANCE

UK regulatory guidance only assumes worst case compound if the holder of the waste can not identify species likely to be present

...and even then "the worse-case chemical form must be able to exist in the environment that the waste being sampled was taken from"

• The challenge is for the waste producer and holder to develop a greater understanding of their waste and present cogent arguments for the characterisation and classification applied to the waste



### ASSESSMENT

British Waterways tendered a contract to undertake "a study of characterisation of sediments with regard to new waste classification guidance'

The report output to include:

- the likely anion-cation relationships present in dredged material for the commonly determined contaminants in BW sediments (carried out by literature search and basic chemistry)
- a recommended testing specification for sediments to ensure data provision for categorisation of dredged materials as nonhazardous or hazardous materials
- any requirements for testing that is required to prove/substantiate the outcomes. Testing SEM/XRF, ecotox...



### **METAL SPECIATION**

For metal species predicted by the report it is unlikely that they occur in levels that would render the sediment to be classed as "hazardous"

Discounted "worst case" species that were highly soluble or highly reactive and known not to be unlikely to occur in natural environment





### **METAL SPECIATION**

| Element | Speciation proposed            | Ramboll / BW basis of speciation         |  |  |  |  |
|---------|--------------------------------|------------------------------------------|--|--|--|--|
| As      | As <sub>2</sub> O <sub>3</sub> | Solubility, literature review, XRD / XRF |  |  |  |  |
| Ва      | BaSO <sub>4</sub>              | Literature review, XRD / XRF             |  |  |  |  |
| Cd      | CdS                            | Solubility, literature review, XRD / XRF |  |  |  |  |
| Cr      | Cr <sub>2</sub> O <sub>3</sub> | Solubility, literature review, XRD / XRF |  |  |  |  |
| Cu      | CuS                            | Solubility, literature review, XRD / XRF |  |  |  |  |
| Hg      | HgS                            | Solubility, literature review, XRD / XRF |  |  |  |  |
| Pb      | PbSO <sub>4</sub>              | Solubility, literature review            |  |  |  |  |
| Мо      | MoO <sub>3</sub>               | Solubility, literature review, XRD / XRF |  |  |  |  |
| Ni      | NiS                            | Literature review, XRD / XRF             |  |  |  |  |
| Se      | Se                             | Solubility, literature review, XRD / XRF |  |  |  |  |
| Zn      | ZnS                            | Solubility, literature review, XRD / XRF |  |  |  |  |



### HYDROCARBONS – OILY WASTE

Further work has been carried out to characterise hazardous status of oily sediments based on analysis of:

- Petrol Range Organics (C6-C10)
   1,000mg/kg category 1 & 2 carcinogens
- Diesel Range Organics (C10-C25)
   10,000mg/kg category 3 carcinogens
- Lubricating Oils (C25-C44)
   1,000mg/kg category 1, 2 & 3 carcinogens
- no exceedence of PRO or DRO; but lubricating oil > 1,000mg/kg
- PAH totals
- Potential issues with lubricating oils analysis





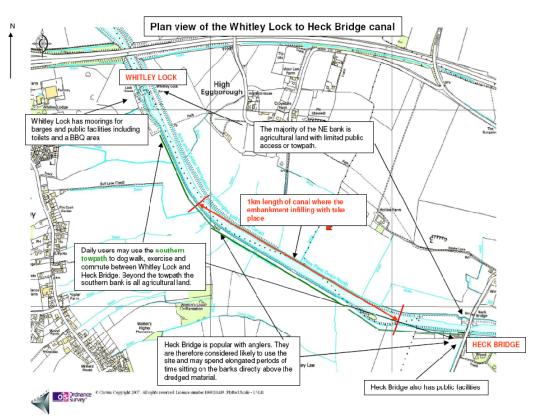
### **CAVEATS TO OUR APPROACH**

- it only applies to BW sediments on navigated waterways
- it only applies where there are no other factors that may affect sediment eg recent pollution events, local point sources
- results are assessed differently for human health risk assessment and for waste characterisation for permitted sites





### **CASE STUDY - INTRODUCTION**


- 100,000m<sup>3</sup> of sediment dredged stored in 6No. lagoons at site nr. Doncaster
- Use the material as infill in the canal bank stabilisation works under a Paragraph 19 WML Exemption
- Classification of the material to prove non-hazardous
- Risk assessment -
  - Human Health to show suitable for use
  - inland fresh waters (was "controlled waters")
- Key issues metals & hydrocarbons





#### 1000 16 ow Farm Wo Long Sandall Ings ArkseyCommon Almholme Ings Long 6 Arksey Common Lane Sanda ...... Arksey Ings Works Sewage Works 040/2 Ð Crown Copyright 2007 0 = 1km

SITE LOCATION



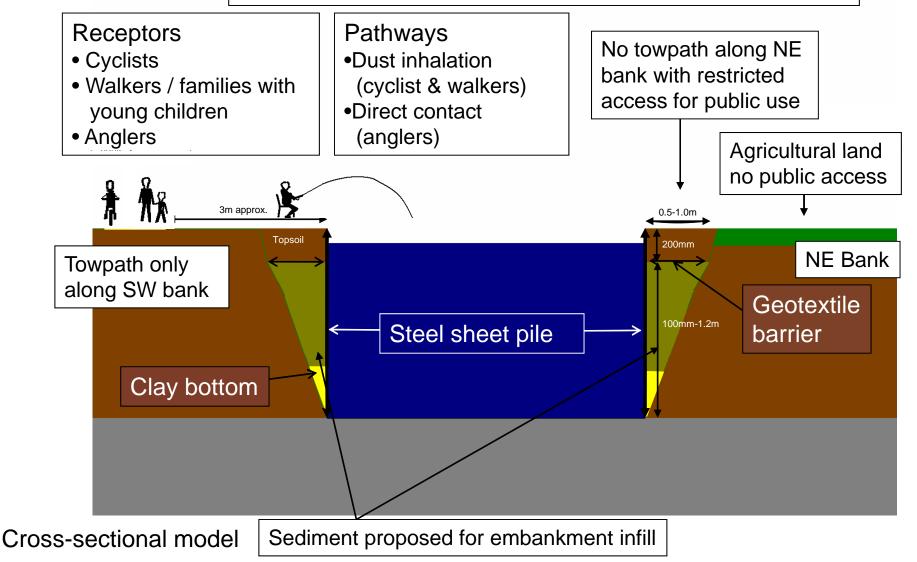


### ASSESSMENT AND SAMPLING STRATEGY

- Screening analysis
- Contaminant distribution
- Statistical analysis
- Additional sampling & analysis










## **CONCEPTUAL SITE MODEL**

RAMBOLL

Cross section of canal with contamination pathways





### CHARACTERISATION SPREADSHEET

#### Appendix E - Calculations to Classify Sediments as Hazardous - Inorganic Components

|    | Input      |              |          |          |                   |                      |         |       |        |          |        |        |              |           |          |             |
|----|------------|--------------|----------|----------|-------------------|----------------------|---------|-------|--------|----------|--------|--------|--------------|-----------|----------|-------------|
|    | results in |              |          |          |                   |                      |         |       |        |          |        |        |              |           |          |             |
|    | this       |              |          |          |                   |                      |         |       |        |          |        |        |              |           |          |             |
|    | column 🕹   |              |          |          |                   |                      | H5      | I     | H6     | H7       | ŀ      | 18     | H10          | H11       | H14      | H14         |
|    | Sample     |              | aub aanu |          | Risk phrases for  |                      | Harmful | Very  | Toxic  | Carcin * | Severe | Burns  | Toxic for    | Mutagenic | Ecotoxic | Ecotoxic 50 |
|    | results    |              | SUD CONV | sub mass | Also pillases ioi |                      |         | Toxic |        |          | burns  |        | reproduction | _         | 50/53    | or 53       |
|    | mg/kg      |              |          | mg/kg    | each compound     | Hazard Threshold     | 250,000 | 1,000 | 30,000 | 1,000    | 10,000 | 50,000 | 5,000        | 1,000     | 2,500    | 25,000      |
| As | 21         | <u>As2O3</u> | 1.32     | 27.72897 | 28, 34            | , 45, 50/53,         | ×       | 28    | ×      | 28       | х      | 28     | ×            | ×         | 28       | 28          |
| Ba | 264        | BaSO4        | 1.70     | 448.6635 | 36                | 6#, 37#              | 449     | ×     | 449    | ×        | х      | ×      | ×            | ×         | ×        | ×           |
| Cd | 3.5        | CdS          | 1.28     | 4.496352 | 22, 23, 25, 45    | , 48, 53, 62, 63, 68 | 4       | ×     | 4      | 4        | ×      | ×      | 4            | 4         | ×        | 4           |
| Cr | 100        | Cr2O3        | 1.46     | 146.1538 | 20, 22, 3         | 36#, 37#, 38#        | 146     | ×     | ×      | ×        | ×      | ×      | ×            | ×         | ×        | ×           |
| Cu | 190        | <u>CuS</u>   | 1.50     | 285.6728 | NOT HAZAR         | DOUS SEE MSDS        | ×       | ×     | х      | х        | х      | х      | ×            | ×         | ×        | ×           |
| Hg | 1.8        | HgS          | 1.16     | 2.087692 | 21                | , 26, 28             | 2       | 2     | ×      | х        | х      | ×      | ×            | ×         | ×        | ×           |
| Pb | 207        | PbSO4        | 1.46     | 302.9718 | 20, 22,           | 33, 61, 62           | 303     | ×     | х      | х        | х      | х      | 303          | ×         | ×        | ×           |
| Ni | 81         | <u>NiS</u>   | 1.55     | 125.1567 | 43, 4             | 19, 50/53            | ×       | ×     | х      | 125      | х      | ×      | ×            | ×         | 125      | 125         |
| Se | 2          | <u>Se</u>    | 1.00     | 2        | 23, 2             | 25, 33, 53           | ×       | ×     | 2      | X        | х      | ×      | ×            | ×         | ×        | 2           |
| Zn | 652        | <u>ZnS</u>   | 1.49     | 971.1188 | 36#,              | 37#, 38#             | ×       | ×     | ×      | ×        | ×      | ×      | ×            | ×         | ×        | ×           |
|    |            |              |          |          |                   | 0                    | 904     | 30    | 455    | 125      | 0      | 28     | 307          | 4         | 153      | 159         |

PASS

30

PASS

455

PASS

125

PASS

0

PASS

28

PASS

307

PASS

4

PASS

153

| Atomic weight |        |       |      |  |  |  |  |
|---------------|--------|-------|------|--|--|--|--|
| As            | 74.9   | As2O3 | 1.32 |  |  |  |  |
| Ba            | 137.33 | BaSO4 | 1.70 |  |  |  |  |
| Cd            | 112.41 | CdS   | 1.28 |  |  |  |  |
| Cr            | 52     | Cr2O3 | 1.46 |  |  |  |  |
| Cu            | 63.55  | CuS   | 1.50 |  |  |  |  |
| Pb            | 207.19 | HgS   | 1.16 |  |  |  |  |
| Hg            | 200.59 | PbSO4 | 1.46 |  |  |  |  |
| Ni            | 58.7   | NiS   | 1.55 |  |  |  |  |
| Se            | 78.96  | Se    | 1.00 |  |  |  |  |
| Zn            | 65.38  | ZnS   | 1.49 |  |  |  |  |
| sulphur       | 32.06  |       |      |  |  |  |  |
| carbon        | 12     |       |      |  |  |  |  |
| oxygen        | 16     |       |      |  |  |  |  |
| chlorine      | 35.455 |       |      |  |  |  |  |

Example calculation of compound mass

for As2O3 = ((74.9x2) + (16 x 3)) / (74.9x2)

PASS or FAIL

SUM

PASS

904

RAMBOLL

PASS

159

Carcins \* If individual Concentrations of Contaminants greater than 1000 mg/kg then FAIL

If individual Concentrations of Contaminants smaller than 1000 mg/kg then PASS

Risk Phrase # - irritating to eyes - threshold level 20% - never exceeded threrefore not included in assessment

NOTE: click on compound to obtain ASL or MSDS Risk Phrase



### **COSTS SAVINGS**

- cost saving by avoiding disposal to landfill £1,000,000.
- Space in a hazardous landfill saved
- Transport the dredgings using the waterway network - saving 10,000 vehicle movements on a 24 mile journey on largely congested roads.
- Using the material from Long Sandall avoided requirement for virgin materials saving £500,000







### CONCLUSIONS

- Extending effort into characterisation, it is possible to demonstrate that material potentially classified as hazardous, is in fact non-hazardous,
  - not a waste but a resource
- This effort saves money and gives wider environmental benefits

   space in a hazardous landfill saved, transport impacts of moving material unnecessarily to hazardous landfill
- Project won Ground Engineering Sustainability Award 2009





# Thank you

**Dr Paul Beckwith Head of Environment** Paul.beckwith@britishwaterways.co.uk 01452 318040 07711 796404 **Dr Phil Studds Director Environment and Nature** Phil.Studds@ramboll.co.uk 0113 245 8812 07931 709943